Color opponency is an efficient representation of spectral properties in natural scenes
نویسندگان
چکیده
The human visual system encodes the chromatic signals conveyed by the three types of retinal cone photoreceptors in an opponent fashion. This opponency is thought to reduce redundant information by decorrelating the photoreceptor signals. Correlations in the receptor signals are caused by the substantial overlap of the spectral sensitivities of the receptors, but it is not clear to what extent the properties of natural spectra contribute to the correlations. To investigate the influences of natural spectra and photoreceptor spectral sensitivities, we attempted to find linear codes with minimal redundancy for trichromatic images assuming human cone spectral sensitivities, or hypothetical non-overlapping cone sensitivities, respectively. The resulting properties of basis functions are similar in both cases. They are non-orthogonal, show strong opponency along an achromatic direction (luminance edges) and along chromatic directions, and they achieve a highly efficient encoding of natural chromatic signals. Thus, color opponency arises for the encoding of human cone signals, i.e. with strongly overlapping spectral sensitivities, but also under the assumption of non-overlapping spectral sensitivities. Our results suggest that color opponency may in part be a result of the properties of natural spectra and not solely a consequence of the cone spectral sensitivities.
منابع مشابه
Color Opponency Constitutes a Sparse Representation for the Chromatic Structure of Natural Scenes
The human visual system encodes the chromatic signals conveyed by the three types of retinal cone photoreceptors in an opponent fashion. This color opponency has been shown to constitute an efficient encoding by spectral decorrelation of the receptor signals. We analyze the spatial and chromatic structure of natural scenes by decomposing the spectral images into a set of linear basis functions ...
متن کاملChromatic structure of natural scenes.
We applied independent component analysis (ICA) to hyperspectral images in order to learn an efficient representation of color in natural scenes. In the spectra of single pixels, the algorithm found basis functions that had broadband spectra and basis functions that were similar to natural reflectance spectra. When applied to small image patches, the algorithm found some basis functions that we...
متن کاملA distributed code for color in natural scenes derived from center-surround filtered cone signals
In the retina of trichromatic primates, chromatic information is encoded in an opponent fashion and transmitted to the lateral geniculate nucleus (LGN) and visual cortex via parallel pathways. Chromatic selectivities of neurons in the LGN form two separate clusters, corresponding to two classes of cone opponency. In the visual cortex, however, the chromatic selectivities are more distributed, w...
متن کاملRepresenting Spectral data using LabPQR color space in comparison to PCA method
In many applications of color technology such as spectral color reproduction it is of interest to represent the spectral data with lower dimensions than spectral space’s dimensions. It is more than half of a century that Principal Component Analysis PCA method has been applied to find the number of independent basis vectors of spectral dataset and representing spectral reflectance with lower di...
متن کاملSpatial and Chromatic Filters Derived from an Information-theoretic Analysis of Natural Scenes
Neurons in the early stages of visual processing should represent the statistical properties of natural scenes efficiently. In previous studies, independent component analysis (ICA) was applied to images based on monochromatic or trichromatic cone arrays (Bell & Sejnowski, 1997; Lee et al., 1999). Here, we compare the results of this approach to physiological data based on the experimental cond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 42 شماره
صفحات -
تاریخ انتشار 2002